Zeta functions that hear the shape of a Riemann surface

نویسنده

  • Matilde Marcolli
چکیده

To a compact hyperbolic Riemann surface, we associate a finitely summable spectral triple whose underlying topological space is the limit set of a corresponding Schottky group, and whose “Riemannian” aspect (Hilbert space and Dirac operator) encode the boundary action through its Patterson-Sullivan measure. We prove that the ergodic rigidity theorem for this boundary action implies that the zeta functions of the spectral triple suffice to characterize the (anti-)conformal isomorphism class of the corresponding Riemann surface. Thus, you can hear the shape of a Riemann surface, by listening to a suitable spectral triple.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zeta functions that hear the shape of a Riemann surface by Gunther Cornelissen and

To a compact hyperbolic Riemann surface, we associate a finitely summable spectral triple whose underlying topological space is the limit set of a corresponding Schottky group, and whose “Riemannian” aspect (Hilbert space and Dirac operator) encode the boundary action through its Patterson-Sullivan measure. We prove that the ergodic rigidity theorem for this boundary action implies that the zet...

متن کامل

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

Hierarchy of the Selberg zeta functions

We introduce a Selberg type zeta function of two variables which interpolates several higher Selberg zeta functions. The analytic continuation, the functional equation and the determinant expression of this function via the Laplacian on a Riemann surface are obtained.

متن کامل

On the Theory of Zeta-functions and L-functions

In this thesis we provide a body of knowledge that concerns Riemann zeta-function and its generalizations in a cohesive manner. In particular, we have studied and mentioned some recent results regarding Hurwitz and Lerch functions, as well as Dirichlet’s L-function. We have also investigated some fundamental concepts related to these functions and their universality properties. In addition, we ...

متن کامل

Zeta Functions and Chaos

This paper is an expanded version of lectures given at M.S.R.I. in June of 2008. It provides an introduction to various zeta functions emphasizing zeta functions of a finite graph and connections with random matrix theory and quantum chaos. Section 2. Three Zeta Functions For the number theorist, most zeta functions are multiplicative generating functions for something like primes (or prime ide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007